If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+75X+20=0
a = 1; b = 75; c = +20;
Δ = b2-4ac
Δ = 752-4·1·20
Δ = 5545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(75)-\sqrt{5545}}{2*1}=\frac{-75-\sqrt{5545}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(75)+\sqrt{5545}}{2*1}=\frac{-75+\sqrt{5545}}{2} $
| (y^2)+8y=192 | | Y^2+8y=192 | | 4y+(y^2/2)=96 | | 11x-6=4x+71 | | 0.5x+x=19500 | | 11x-9=6x+26 | | 5(n–3)=35 | | 13x+117x+9=180 | | p^2−p−12=0 | | p^2−p−12 = 0 | | 2n2=5n+3 | | 9x+15=86+3x-5 | | 6x2-4x=-3 | | -4(2y+9)+3y=6–4(y–3) | | 11x2-10x=-5 | | 3x+6+7x-11+41+62+6x-5+4x+7=730 | | 6x+11+14x-8+8x+9=180 | | 12x+14=3x+41 | | 19x-1=40+13x+1 | | 2x²+-4+7=0 | | p2-120=2p | | t/5+2=10 | | 9/12*5=a | | c^2=2c-3 | | X^2+2x-61=0 | | 6x+-2=-3x+7 | | 128=3x+10x-2 | | 1/2()-4+2x+9=180 | | 10r2-5=-195 | | 6x2+1=-47 | | 16x+10=7x+82 | | x-14=9x-4 |